Web scraping shows how media coverage of COVID-19 turned neutral even as deaths increased

September 29, 2020

Media Coverage Of Covid 19 Turns Neutral Even As Deaths Increase And Remain High

Here at Import.io we like to use web data to answer any question and questions about COVID-19 are no different.  Over the course of the year we felt that we had noticed the tone of US corporate communications change from “emergency!” in the early stages of the pandemic to “this is the new normal” and we wondered if this change in tone could be detected in the wider US news media.

We used Import.io to collect 665,000 news stories from the from the websites of 6,800 US news sources, where the words: “covid”, “coronavirus” or “pandemic” appeared in the headline.  We calculated a sentiment score for each news story and then plotted that against the total number of COVID-19 news stories and the number of US COVID-19 deaths to see what relationships would be revealed.

The most notable result was that while media sentiment towards the pandemic started off negative (it’s a global pandemic after all) it quickly moved to be more neutral, even as reported US COVID-19 deaths peaked and then stabilized around 5,000 per week.

Interpreting the graph

  • The grey area represents 665,000 US news articles, plotted weekly over time that mention either the words: “covid” or “coronavirus” or “pandemic” in the headline.
  • The red area represents 200,000 US COVID-19 deaths, plotted weekly over time.
  • The headline and snippet of a random sample of 800 COVID-19 news articles from each day (30% of overall total) were scored for positive or negative sentiment (on a scale of +1 to -1).  The blue line represents the average news story sentiment, plotted weekly over time.


We used Import.io to gather 1.2 million news articles from the websites of 13,000 different global, English-language news sources where the publication date was between January 1st, 2020 and September 28th, 2020 where either “covid” or “coronavirus” or “pandemic” appeared in the headline.  Each news website was classified according to the country of primary audience and articles from non-US news websites and known US link aggregators (Reddit etc.) were excluded, leaving us with 665,000 news articles from 6,800 US news sources.  Duplicate articles were removed based on URL and headline + snippet combination prior to analysis.

For each of the 271 days since the beginning of the year, we randomly sampled up to 800 news articles published on each date and performed sentiment analysis on the article headline and snippet using Google’s Natural Language API.  200,000 news stories (30% of the total) were scored for sentiment in this way.

Google’s sentiment scoring gives ratings from +1 to -1.  The average weekly COVID-19 story sentiment ranges from -0.22 in February to -0.12 in June.  The notable result here is that there was a marked movement in the positive direction, even as cases and then deaths climbed steeply during March and April and have remained high since.

Entire Document Sentiment Analysis

Data from Johns Hopkins University was used for US COVID-19 deaths.

The distribution of news stories per news source has a long tail, as you would expect: larger news organizations contributed more news stories to our dataset.  The 100 largest contributing news sources account for 60% of the total articles in the dataset.

About Import.io

Import.io extracts and analyzes web data at scale for the largest companies in the world.  If web data is core to your business, schedule an appointment to talk to us about how we can help.

As the experts, we have plenty more knowledge to share

Scaleworks acquires Import.io, the leading web data extraction provider for enterprises.
The Digital Shelf Guide: web data you need for ecommerce insights
2022 Digital Shelf Trends: The Overlooked insights – Webinar Recording